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Microcanonical Monte Carlo simulation of lattice gas models
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We introduce a true microcanonical ensemble appropriate for Monte Carlo simulations of lattice gas models
in which both the energy and the number of particles are held fixed. We also deduce formulas that allow us to
do the calculation of the intensive quantities: temperature and chemical potential. The numerical results coming
from Monte Carlo simulations defined according to this microcanonical ensemble compare well with results
coming from the ordinary canonical ensemble.
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I. INTRODUCTION

The use of Monte Carlo simulations has become an
portant tool in the study of interacting systems in thermo
namic equilibrium@1#. The simulations are performed withi
the framework of a given specified ensemble. The lattice
model, or Ising model, for instance, can be simulated in
grand-canonical@2–4#, in the canonical@5,6#, or in other
ensembles@7–11#. If one is interested in the bulk propertie
the use of one or other ensemble is a matter of mathema
or computational convenience since in the thermodyna
limit the ensembles are equivalent, at least for short ra
interactions@12–14#. If, on the other hand, one is intereste
in the study of small systems, one should keep in mind t
results coming from distinct ensembles might be different
this case the choice of which ensemble to use should
dictated by the physics one is interested in.

An important feature of any ensemble is that if a cert
thermodynamic quantity is kept fixed then its conjugate i
fluctuating quantity. If the fixed variable is an intensive th
modynamical quantity, the ensemble calculation of its ext
sive conjugate quantity poses no problem since, usually,
conjugate quantity is simply the ensemble average of a fl
tuating variable. When this is not the case, as happens
the entropy, it can be indirectly calculated from some fun
tion of a fluctuating variable@15#. However, if the extensive
quantity is kept fixed the ensemble calculation of its inte
sive conjugate quantity is not a trivial task. For instance,
calculate the chemical potential in the canonical ensem
one has to use such schemes as the insertion or remov
particles@16,17#.

Two problems concern us here. First, we wish to defin
microcanonical ensemble appropriate for Monte Carlo sim
lations of lattice gas systems in which both the energyand
the number of particles are conserved. This should be dis
guished from simulations in which the energy is conserv
but not the number of particles~or magnetization!, as are the
cases of the Monte Carlo simulation introduced by Cre
@7#, the so called Q2R cellular automaton@8–10#, or the
lattice gas with kinetic energy of Ray and Frelechoz@11#.
Actually, the ensemble used by Creutz@7# is such that the
energy of the system is not strictly fixed but fluctuates ab
a fixed lower bound. In the case of the work of Ray a
Frelechoz@11#, kinetic energy is introduced so that potent
energy fluctuates, with overall energy fixed.
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Second, we wish to deduce formulas that can be use
calculate the intensive variables over an ensemble in wh
the conjugate extensive quantity is conserved. This is acc
plished by the use of the following reasoning. Consider
ensemble in which a certain intensive variableh is held
fixed. Suppose that we have obtained for thish-constant en-
semble an equation of the type

h5 f ~^Q1&,^Q2&, . . . !, ~1!

where f is a function of the averageŝQ1&, ^Q2&, . . . and
neither the functionf nor the quantitiesQ1 , Q2 , . . . depend
explicitly on h. Let us now consider the ensemble in whic
the variableM, conjugate toh, is held fixed. If the two en-
sembles are equivalent, Eq.~1! must also be valid for the
M-constant ensemble. But the right-hand side of Eq.~1! does
not depend onh, so that it can be used to calculateh.

In the following section, we deduce formulas such as E
~1! appropriate for generalized lattice gas models, or Is
model with general interactions, within the grand-canoni
ensemble. Then, assuming the equivalence of ensembles
formulas will be used within the canonical and microcano
cal ensembles. The algorithm we use for the simulations
the lattice gas model is a generalization of the Kawas
dynamics@5,6# and is defined as follows. At each time ste
two sites of the lattice, one occupied by a particle and
other vacant, are chosen at random. The particle is, th
transferred to the empty site if the total energy does
change. The total number of particles and the total energ
then strictly conserved. Note that the pair of empty-occup
sites is chosen among all possible pairs, not only nea
neighbor pairs as is the case in usual Kawasaki dynamics@6#.
In this paper we apply the method to the lattice gas mo
with nearest neighbor interaction on a square lattice.

II. GRAND-CANONICAL ENSEMBLE

Let us consider a lattice for which at each site we atta
an occupation variableh i that takes the value 0 or 1. In th
grand-canonical ensemble the probability distributionP(h)
of the stateh5(h1 ,h2 , . . . ,hV), whereV is the total num-
ber of sites of the lattice, is given by

P~h!5
1

J
exp$2bf~h!1bmn~h!%, ~2!
©2003 The American Physical Society25-1
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where

f~h!5(
i , j

« i j h ih j ~3!

is the energy and

n~h!5(
i

h i ~4!

is the number of particles. The quantityb is the inverse of
temperature andm the chemical potential.

Next we consider the probability distributionP(hk) of the
configuration hk defined by hk5(h1 ,h2 , . . . ,1
2hk , . . . ,hN). The configurationhk is the configuration
obtained fromh by removing or placing a particle at sitek
according to whether the sitek is occupied or empty, respec
tively. From Eq.~2! it follows that

P~h!

P~hk!
5exp$2b~2hk21!@fk~h!2m#%, ~5!

or

P~h!5P~hk!exp$2b~2hk21!@fk~h!2m#%, ~6!

where

fk~h!5(
j

«k jh j ~7!

is the difference in energy between a state with a particl
site k and a state with no particle at the same site.

If we consider the average of any state functionf (h),
defined by

^ f ~h!&gc5(
h

f ~h!P~h!, ~8!

we have

^ f ~h!&gc5^ f ~hk!exp$2b~122hk!@fk~h!2m#%&gc,
~9!

where^•••&gc denotes the average over the grand-canon
ensemble defined by Eq.~2!.

If we choosef (h)5hk then f (hk)512hk and we have

^hk&gc5^~12hk!exp$2bfk~h!%&gcexp$bm%, ~10!

where we have taken into account the obvious relati
hkhk5hk andhk(12hk)50. From this we get

exp$2bm%5
^~12hk!exp$2bfk~h!%&gc

^hk&gc
. ~11!

Analogously, if we considerf (h)512hk then f (hk)
5hk and we get

^~12hk!&gc5^hkexp$bfk~h!%&gcexp$2bm%, ~12!
06612
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exp$bm%5
^hkexp$bfk~h!%&gc

^~12hk!&gc
. ~13!

Next we considerf (h)5hkd„fk(h),E… where d is the
Kroneker delta, andE is any of the possible values offk(h).
We have then

^hkd„fk~h!,E…&gc5^~12hk!d„fk~h!,E…&gc

3exp$2bE1bm%, ~14!

or

exp$bE2bm%5
^~12hk!d„fk~h!,E…&gc

^hkd„fk~h!,E…&gc
. ~15!

III. CANONICAL AND MICROCANONICAL
ENSEMBLES

In the canonical ensemble the probability distributi
Pc(h) is given by

Pc~h!5
1

Z
exp$2bf~h!%d„n~h!,N…, ~16!

whereN is the total number of particles. Appealing to th
equivalence of ensembles, we use Eqs.~11! and~13! to write

exp$2bm%5
^~12hk!exp$2bfk~h!%&c

r
, ~17!

and

exp$bm%5
^hkexp$bfk~h!%&c

12r
, ~18!

where ^•••&c denotes the average over the canonical
semble defined by Eq.~16!. In this ensemblê hk&c5r,
wherer5N/V is the density of particles. These two equ
tions have been obtained previously by other meth
@16,17# in which a particle is inserted or removed from th
system.

In the microcanonical ensemble the probability distrib
tion Pmc(h) is given by

Pmc~h!5
1

W
d„f~h!,U…d„n~h!,N…, ~19!

whereU is the total energy, which is fixed. Taking into a
count the equivalence of ensembles we use Eq.~15! to write

exp$bE2bm%5
^~12hk!d„fk~h!,E…&mc

^hkd„fk~h!,E…&mc
, ~20!

where^•••&mc denotes the average over the microcanoni
ensemble defined by Eq.~19!. This formula shows that the
local energies are canonically distributed and it allows us
calculate the temperature as well as the chemical pote
with respect to the microcanonical ensemble. We remark
Creutz @7# and Lang and Stauffer@10# used distinct ap-
5-2
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proaches to determine the temperature in their constant
ergy ensembles. Creutz@7# calculated the temperature by a
suming a canonical distribution of the energies carried by
‘‘demon’’ whereas Lang and Stauffer@10# used an empirica
energy-temperature relationship determined by a canon
Monte Carlo Simulation. The numerator~denominator! on
the right-hand side of Eq.~20! is interpreted as the probabi
ity that the energy cost of inserting~removing! a particle will
be E.

IV. NUMERICAL SIMULATIONS

We have tested the efficiency of the present method on
lattice gas with nearest neighbor interactions defined o
square lattice with helical periodic boundary condition@18#.
The system was simulated at fixed densities and energie
order to prepare the system at each desired energy, we
the simulations from either ordered or disordered configu
tions and then particle-hole exchange at arbitrary distance@6#
is attempted and accepted only if energy is lowered. O
the desired energy is achieved, we start the microcanon
simulation in which only random-distance particle-hole e
change that maintains energy unaltered is performed. A
relaxation, measurement of the interesting variables is in
ated. The system is assumed to be relaxed when varia
measured from at least two independent simulations, sta
from ordered and disordered initial configuration, ha
merged. In our simulation, a Monte Carlo step is equal toN
particle-hole exchange attempts whereN is the number of
particles.

Temperature-energy relations are obtained from rela
~20!. For the lattice gas on a square lattice with near
neighbor interactionfk(h)52«(dhk1d , thus the possible
values of the nearest neighbor energyE are 2n« wheren
50,1,2,3, and 4. The right-hand side of Eq.~20!, which we
denote byRn , may be written as the ratio

Rn5
^Nn&mc

^Dn&mc
~21!

between the average of the number of particlesNn with n
occupied nearest neighbor sites and the average of the n
ber of holesDn with n occupied nearest neighbor sites. A
cording to Eq.~20!, Rn can be written as

ln Rn52b«n2bm, n50,1,2,3,4. ~22!

If we measure the temperature and the chemical potentia
units of e we may write

2 ln Rn5
1

T
n1

m

T
, n50,1,2,3,4, ~23!

and note that temperature and chemical potential can be
tained from the angular and linear coefficient of the line
relation. Figure 1 shows the quantitiesNn and Dn as func-
tions of Monte Carlo steps~mcs! for the total energy per site
u521.9 and particle densityr50.5. From the averages o
Nn andDn we computeRn . Results are shown in Fig. 2 fo
several values ofu, both above and below the critical tem
06612
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perature Tc of the infinite system (Tc52/ln(11A2)
52.269 . . . @19#! and for particle densityr50.5. We see that
the linear fitting allows us to get the temperature with ve
good precision. Densityr50.5 corresponds to zero magne
zation and zero magnetic field at all temperatures. Theref
m522«, from Ising-lattice gas equivalence@20#, so that Eq.
~23! becomes lnRn52b«(n22), a condition fulfilled by our
data, as can be seen from Fig. 2.

We have compared our results both with exact results@19#
~known for densityr50.5! and with previous results@21#
of simulations in the canonical ensemble~for densities
r50.1, 0.2, and 0.5!. Energy-temperature relations were o
tained from the above linear fittings and specific heat w
obtained from energy numerical differentiation. Figures
and 4 show our data for energy and specific heat as a fu
tion of temperature. Comparison with data from simulatio
in the canonical ensemble@21# shows that the two method

FIG. 1. Relaxation data for number of particlesNn ~a! and num-
ber of holesDn ~b! with n occupied nearest neighbor sites. Da
obtained from a simulation in a square lattice with linear sizeL
5640, total energy per siteu521.9, and particle densityr50.50,
starting in a disordered initial condition.

FIG. 2. Logarithm plot ofRn as a function ofn for several
values of the total energy per siteu and its calculated temperatureT
according to Eq.~23!, for a square lattice with linear sizeL580 and
particle densityr50.5.
5-3
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give very similar results for different densities, for energy
well as for specific heat in accordance with the equivale
of ensembles assumed by our method. Data also com
very favorably with exact results for energy aboveTc and for
specific heat at all temperatures.

Deviation of energy from the exact result belowTc , seen
in Fig. 3, can be attributed in both cases~canonical and mi-
crocanonical! to interface finite-size effects. In this range
temperatures, energy per particles is almost independen
density, in the case of the infinite lattice, and has22 as a

FIG. 3. Total energy per siteu as a function of temperatureT
calculated from the microcanonical Monte Carlo simulation for s
eral values of the density of particles. For comparison we sh
results coming from canonical Monte Carlo simulations@21#. For
both cases the linear lattice size wasL580. Also shown is the exac
result for the infinite lattice.

FIG. 4. Specific heatC as a function of temperatureT from the
microcanonical Monte Carlo simulation calculated by numeri
differentiation of data in Fig. 3. For comparison we show also
sults coming from canonical Monte Carlo simulations@21#. For
both cases the linear lattice size wasL580. Also shown is the exac
result for the infinite lattice.
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lower limit. However, the minimum total energy per siteumin
for an L lattice of densityr is given by

umin5221minH 4

L
,
Apr

L J , ~24!

which givesumin521.95, ;21.99, and;21.99 for densi-
ties r50.5, 0.2, and 0.1, respectively. These lower limits f
energy are in good agreement with the results shown in
3. This finite-size effect belowTc can also be seen in Fig. 5
which shows that the deviation of the temperature from
asymptotic value decays as 1/L. AboveTc the deviation does
not decay as 1/L anymore and becomes proportional to 1/L2

as can be seen in Fig. 5.

V. CONCLUSION

We have defined a true microcanonical ensemble ap
priate for lattice gas models in which both the energy and
number of particles are held fixed which has not been d
previously for lattice gas systems. We have also dedu
formulas that allow us the calculation of the intensive qua
tities: temperature and chemical potential. The microcano
cal algorithm is of easy implementation and the temperat
and chemical potenial can be calculated easily. The appl
tion of this scheme to the Ising model gives results that co
pare very well with results coming from the canonical e
semble. In contrast with other Monte Carlo ensembles u
in equilibrium statistical mechanics, in which the states
drawn with the desired Gibbs probability distribution only
the long time regime, in the present microcanonical Mo
Carlo ensemble the states are being chosen with the co
distribution at any time of the simulation even in the initi
stages. However, the states generated in the initial stage
the microcanonical simulation should be discarded beca
the fabricated initial configuration is not a typical one, a fa
reflected in the relaxation shown in Fig. 1.

-
w

l
-

FIG. 5. Dependence of temperature with the linear sizeL for
several values of the total energy per siteu. The data for tempera-
ture are shown as a function of 1/L ~a! and 1/L2 ~b!. The values
approach the exact value~filled symbols! asL→`. Absolute values
of the energy are given.
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