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Microcanonical Monte Carlo simulation of lattice gas models
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We introduce a true microcanonical ensemble appropriate for Monte Carlo simulations of lattice gas models
in which both the energy and the number of particles are held fixed. We also deduce formulas that allow us to
do the calculation of the intensive quantities: temperature and chemical potential. The numerical results coming
from Monte Carlo simulations defined according to this microcanonical ensemble compare well with results
coming from the ordinary canonical ensemble.
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[. INTRODUCTION Second, we wish to deduce formulas that can be used to
calculate the intensive variables over an ensemble in which
The use of Monte Carlo simulations has become an imthe conjugate extensive quantity is conserved. This is accom-
portant tool in the study of interacting systems in thermody-plished by the use of the following reasoning. Consider an
namic equilibrium{1]. The simulations are performed within ensemble in which a certain intensive varialileis held
the framework of a given specified ensemble. The lattice gaixed. Suppose that we have obtained for #frsonstant en-
model, or Ising model, for instance, can be simulated in the€mble an equation of the type
grand-canonica[2—4], in the canonical5,6], or in other

ensemble§7—11]. If one is interested in the bulk properties, h=1((Q1).(Q2). .. .), D

the use of one or other ensemble is a matter of mathematical ) )

or computational convenience since in the thermodynami¥heref is a function of the average®Q:), (Q,), ... and
limit the ensembles are equivalent, at least for short rang8either the functiori nor the quantitie®;, Q,, ... depend

interactions[12—14. If, on the other hand, one is interested explicitly on h. Let us now consider the ensemble in which
in the study of small systems, one should keep in mind thathe variableM, conjugate tdh, is held fixed. If the two en-
results coming from distinct ensembles might be different. Insémbles are equivalent, EGL) must also be valid for the
this case the choice of which ensemble to use should b¥-constant ensemble. But the right-hand side of &gdoes
dictated by the physics one is interested in. not depend o, so that it can be used to calculate
An important feature of any ensemble is that if a certain In the following section, we deduce formulas such as Eg.
thermodynamic quantity is kept fixed then its conjugate is d1) appropriate for generalized lattice gas models, or Ising
fluctuating quantity. If the fixed variable is an intensive ther-model with general interactions, within the grand-canonical
modynamical quantity, the ensemble calculation of its exten€nsemble. Then, assuming the equivalence of ensembles, the
sive conjugate quantity poses no problem since, usually, thormulas will be used Wlth_ln the canonical and microcanoni-
conjugate quantity is simply the ensemble average of a flucc@l ensembles. The algorithm we use for the simulations of
tuating variable. When this is not the case, as happens with1e lattice gas model is a generalization of the Kawasaki
the entropy, it can be indirectly calculated from some func-dynamics[5,6] and is defined as follows. At each time step
tion of a fluctuating variablg15]. However, if the extensive WO sites of the lattice, one occupied by a particle and the
quantity is kept fixed the ensemble calculation of its inten-Other vacant, are chosen at random. The particle is, then,
sive conjugate quantity is not a trivial task. For instance, toransferred to the empty site if the total energy does not
calculate the chemical potential in the canonical ensembléhange. The total number of particles and the total energy is
one has to use such schemes as the insertion or removal fen strictly conserved. Note that the pair of empty-occupied
particles[16,17). sites is chosen among all possible pairs, not only nearest
Two problems concern us here. First, we wish to define d'€ighbor pairs as is the case in usual Kawasaki dynajiéiics
microcanonical ensemble appropriate for Monte Carlo simuln this paper we apply the method to the lattice gas model
lations of lattice gas systems in which both the eneagy with nearest neighbor interaction on a square lattice.
the number of particles are conserved. This should be distin-
guished from simulations in which the energy is conserved Il. GRAND-CANONICAL ENSEMBLE
but notthe number of particle@r magnetizatioy as are the . . . .
cases of the Monte Carlo simulation introduced by Creutz L€t us consider a lattice for which at each site we attach
[7], the so called Q2R cellular automat¢@—10, or the an occupation variable; that takes the value 0 or 1. In the

lattice gas with kinetic energy of Ray and Frelecta]. grand-canonical ensemble the probability distributi®fvy)

Actually, the ensemble used by Cred® is such that the Of the staten=(7y,7,, ... ,7y), whereV is the total num-
energy of the system is not strictly fixed but fluctuates aboveer of sites of the lattice, is given by

a fixed lower bound. In the case of the work of Ray and 1

FrelechoZ 11], kinetic energy is introduced so that potential _ = _ n

energy fluctuates, with overall energy fixed. P() Eexp{ BoCm+ Bun(m)}, @
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where

¢(77):Zj Eij 7 7 3

is the energy and

n<n>=2i n (4)

is the number of particles. The quantig/is the inverse of
temperature ang the chemical potential.

Next we consider the probability distributid¥( *) of the
configuration 7* defined by 7*=(7%1,75, ..., 1
— 7, --.,mn). The configurationz® is the configuration
obtained from#» by removing or placing a particle at sike
according to whether the siteis occupied or empty, respec-
tively. From Eq.(2) it follows that

P expi- B Dl —ull 6)
P(7)
or
P(n)=P(7)exp{—B2m—L)[d(m)—pl}, (6
where
d’k(ﬂ):; Ekj (7)
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so that

< 7]keXp{,8¢k( 7])}>gc
<(l_ 77k)>gc .

Next we considerf(7) = n.6(d(7),E) where § is the
Kroneker delta, ané is any of the possible values @i.( 7).
We have then

(mc8(Di(7),E)) o= (1= 1) (i 1), E)) e
xexp{— BE+ Bu},

exp{Bu}= (13

(14

<(1_ 7]k) 5(¢k( 77) ) E)>gc
(mo(P(1m),E))ge

exp{BE— Bu}= (15

I1l. CANONICAL AND MICROCANONICAL
ENSEMBLES

In the canonical ensemble the probability distribution
P.(7) is given by

1
P(n)=Zexp[—Bd(7)};on(7).N), (16)

where N is the total number of particles. Appealing to the
equivalence of ensembles, we use E@4) and(13) to write

(1= moexp —Bom})e

is the difference in energy between a state with a particle aand

sitek and a state with no particle at the same site.
If we consider the average of any state functiqmy),
defined by

<f<n>>gc=2n f(n)P(7), 8

we have

(F()ge=(F(7)exp{ = B(1 =27 )[ du( ) — ]} ge .

exp— Bu}= P (17)
exp{ﬁu}=<nkeXp£B_(ik( 77)})0' (19

where (- - -). denotes the average over the canonical en-
semble defined by Eq(16). In this ensemble7).=p,
wherep=N/V is the density of particles. These two equa-
tions have been obtained previously by other methods
[16,17 in which a particle is inserted or removed from the
system.

In the microcanonical ensemble the probability distribu-
tion P, 7) is given by

where(- - )4 denotes the average over the grand-canonical

ensemble defined by EQ).
If we choosef (%)= 7, thenf(#)=1— 7, and we have

( 77k>gc: (1= n)exp— Byl W)})gceXp{BM}y (10

1

whereU is the total energy, which is fixed. Taking into ac-
count the equivalence of ensembles we use(IEs). to write

where we have taken into account the obvious relations

= nx and n,(1—n)=0. From this we get

(1= moexp —Bo( )} )ge
<77k>gc '

exp{— Bu}= (1D

Analogously, if we considerf(7)=1— 7, then f(7)
= 7, and we get

(1= m))ge=(meXR Bd( M) gXPH — Bu}, (12

<(1_ ) 6(di(7), E)>mc
<77k5(d’k( 77)aE)>mc ,

where(- - - ), denotes the average over the microcanonical
ensemble defined by Eq19). This formula shows that the
local energies are canonically distributed and it allows us to
calculate the temperature as well as the chemical potential
with respect to the microcanonical ensemble. We remark that
Creutz [7] and Lang and Stauffef10] used distinct ap-

exp{BE—Bu}= (20
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proaches to determine the temperature in their constant er 195

= ] =0 ]
ergy_ensembles_. Creglii] cal_culated the temperature by as- 190 - il rr . "
suming a canonical distribution of the energies carried by the i 1t B
“demon” whereas Lang and Stauff¢t0] used an empirical > 1L 1
energy-temperature relationship determined by a canonica  1?[f 1F 7
Monte Carlo Simulation. The numeratédenominator on S L . n=3 1 n=/ )
the right-hand side of Eq20) is interpreted as the probabil- < 9 1F 1=
ity that the energy cost of insertiigemoving a particle will >= : . §
be E. 6 1 F .
n=2 ]
IV. NUMERICAL SIMULATIONS SO T n=l n=4 n=3 |
We have tested the efficiency of the present method on the e —— r—

lattice gas with nearest neighbor interactions defined on ¢ %0 100 200 300 406 500 0 100 200 300 400 500
square lattice with helical periodic boundary condit{ds]. mcs / 1000 mes / 1000
The system was simulated at fixed densities and energies. In i ,
order to prepare the system at each desired energy, we st%rtF'G' 1. Relaxation data for number of partiché (a) and num-
the simulations from either ordered or disordered configural®' Of 1olesDy (b) with n occupied nearest neighbor sites. Data
tions and then particle-hole exchange at arbitrary distfice Sbéj'(';ef tfr?m a smulatn;;:_m si\;qua:je Iat:.'cle \(/jwth l.'”i%:éze
is attempted and accepted only if energy is lowered. Oncg artin’g ?naafj?seg?ge?s& ?rlﬂti;I coﬁciiti)nn particle densily=0.50,
the desired energy is achieved, we start the microcanonicaf '
simulation in which only random-distance particle-hole ex- o
change that maintains )énergy unaltered ispperformed. Aftperature Tc of the mﬂmtg system Te=2/In(1+2)
relaxation, measurement of the interesting variables is initi— 2-2 - . . [19]) and for particle density=0.5. We see that
ated. The system is assumed to be relaxed when variabld€ linear fitting allows us to get the temperature with very
measured from at least two independent simulations, starte@0d precision. Density=0.5 corresponds to zero magneti-
from ordered and disordered initial configuration, haveZation and zero _magne_tlc field at a_II temperatures. Therefore,
merged. In our simulation, a Monte Carlo step is equalito ~=—2¢, from Ising-lattice gas equivalen¢0], so that Eq.
particle-hole exchange attempts whéids the number of (23 becomes IiR,=—pBe(n—2), a condition fulfilled by our
particles. data, as can be seen from Fig. 2. .
Temperature-energy relations are obtained from relation We have compared our results both with exact re$u$
(20). For the lattice gas on a square lattice with nearestknown for densityp=0.5 and with previous resultf21]
neighbor interactionp,(7) = — &3 574+ s, thus the possible of simulations in the canonical ensemb(&)r densities
values of the nearest neighbor enefyare —ne wheren ~ #=0.1, 0.2, and 0 Energy-temperature relations were ob-
=0,1,2,3, and 4. The right-hand side of E80), which we tame_d from the above linear .flttlng_s and §p¢0|f|c _heat was
denote byR., may be written as the ratio obtained from energy numerical dlfferent_|§1t|on. Figures 3
and 4 show our data for energy and specific heat as a func-

N ion of temperature. Comparison wi ata from simulations
e tion of temperature. Comp th data f lat
n= in the canonical ensem shows that the two methods
R D (21 th | b[@1] sh that the t thod
n/mc
between the average of the number of partidigswith n 8 ' ' ' ' ' '
occupied nearest neighbor sites and the average of the nun u T
ber of holesD, with n occupied nearest neighbor sites. Ac- ©-0 06250 3.641
cording to Eq.(20), R, can be written as | D O G
i 4+<-1.7969 1.747
NRy=—pen—pu, n=01234. @) . | mm 15250 1134
If we measure the temperature and the chemical potential irS  °[
units of e we may write : )
1 n 4F
— - +— = b
InR, Tn T n=0,1,2,3,4, (23
and note that temperature and chemical potential can be ok 3 . ! . ! . !
tained from the angular and linear coefficient of the linear 0 ! ;"1 3

relation. Figure 1 shows the quantitidg, andD,, as func-
tions of Monte Carlo stepgncs for the total energy per site FIG. 2. Logarithm plot ofR, as a function ofn for several
u=—1.9 and particle density=0.5. From the averages of values of the total energy per siieand its calculated temperattife
N, andD, we computeR,,. Results are shown in Fig. 2 for according to Eq(23), for a square lattice with linear size=80 and
several values ofi, both above and below the critical tem- particle densityp=0.5.
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FIG. 3. Total energy per sita as a function of temperatufE several values of the total energy per siteThe data for tempera-

calculated from the microcanonical Monte Carlo simulation for sev-ture are shown as a fun_ct|on ofLfa) and 1L* (b). The values
eral values of the density of particles. For comparison we Shov\?pproach the exact'valujﬁlled symbol3 asL—ee. Absolute values
results coming from canonical Monte Carlo simulatid@4]. For of the energy are given.

both cases the linear lattice size was 80. Also shown is the exact

lower limit. However, the minimum total ener er sitg;
result for the infinite lattice. gy per Silgin

for anL lattice of densityp is given by

give very similar results for different densities, for energy as
well as for specific heat in accordance with the equivalence
of ensembles assumed by our method. Data also compare
very favorably with exact results for energy abdveand for ~ Which givesup,=—1.95, ~—1.99, and~—1.99 for densi-
specific heat at all temperatures. ties p=0.5, 02 and 0.1, respectl\_/ely. These lower |Im|’FS fo_r
Deviation of energy from the exact result beldw, seen €Nnergy are in good agreement with the results shown in Fig.
in Fig. 3, can be attributed in both casesnonical and mi- - This finite-size effect below, can also be seen in Fig. 5,
crocanonical to interface finite-size effects. In this range of Which shows that the deviation of the temperature from its
temperatures, energy per particles is almost independent 8fYMPptotic value decays ad 1/AboveT, the deviation does

density, in the case of the infinite lattice, and hag as a n°t decay as 1/ anymore and becomes proportional t/
as can be seen in Fig. 5.

Upin=— 2+ min{i,\/ﬁ}, (29)

V. CONCLUSION

— exact

A O canonical ] We have defined a true microcanonical ensemble appro-
microcanonical

priate for lattice gas models in which both the energy and the
number of particles are held fixed which has not been done
previously for lattice gas systems. We have also deduced
formulas that allow us the calculation of the intensive quan-
tities: temperature and chemical potential. The microcanoni-
cal algorithm is of easy implementation and the temperature
and chemical potenial can be calculated easily. The applica-
tion of this scheme to the Ising model gives results that com-
pare very well with results coming from the canonical en-
semble. In contrast with other Monte Carlo ensembles used
in equilibrium statistical mechanics, in which the states are
drawn with the desired Gibbs probability distribution only in
the long time regime, in the present microcanonical Monte

FIG. 4. Specific hea€ as a function of temperatufefrom the ~ Carlo ensemble the states are being chosen with the correct
microcanonical Monte Carlo simulation calculated by numericaldistribution at any time of the simulation even in the initial
differentiation of data in Fig. 3. For comparison we show also re-Stages. However, the states generated in the initial stages of
sults coming from canonical Monte Carlo simulatiofsl]. For ~ the microcanonical simulation should be discarded because
both cases the linear lattice size vias 80. Also shown is the exact the fabricated initial configuration is not a typical one, a fact
result for the infinite lattice. reflected in the relaxation shown in Fig. 1.
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